这是tensorflow官网的第一个例子,按他的做就可以在测试数据集达到91%左右的识别率。之后的cnn版本就可以在测试数据集达到98%以上的正确率。
因为直接用他的写没什么感觉,然后稍微摸索了一下mnist的内容。
下面先将mnist的55000个测试数据变成图片的形式,直观一点。
#python3.5 #windows #引入所需库 import tensorflow.examples.tutorials.mnist.input_data as input_data import tensorflow as tf from PIL import Image,ImageFilter import numpy as np import os #关掉警告,tensorflow会有op unknown的警告 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' #读取mnist数据,第一次的话会自动下载 mnist=input_data.read_data_sets("MNIST_data/", one_hot=True) #将每个784*1的像素数据变成28*28,再生成图像 for z in range(len(mnist.train.images)): imgArr=mnist.train.images[z] im=Image.new("RGB",(28,28)) for i in range(28): for j in range(28): r=int(imgArr[i*28+j]*255) im.putpixel((j,i),(r,r,r)) num=np.argmax(mnist.train.labels[z]) im.save("train/"+str(z)+"_"+str(num)+".jpg","jpeg") print("finish")
之后直接读取图像来进行训练。
#python3.5 #windows import tensorflow.examples.tutorials.mnist.input_data as input_data import tensorflow as tf import numpy as np from PIL import Image,ImageFilter import os mnists=input_data.read_data_sets("MNIST_data/", one_hot=True) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' f=os.listdir("train/") L=len(f)-1 mnist=np.zeros((L,784)) label=np.zeros((L,10)) #读取每个图像数据存到mnist中,类别存到label中 for i in range(L): imgdir='train/'+str(f[i]) img=Image.open(imgdir).convert("L") mnist[i]=np.array(img.getdata())/255 label[i]=[1 if j==int(f[i].split("_")[1][:-4]) else 0 for j in range(10)] #之后的操作和tensorflow官网一样 x=tf.placeholder(tf.float32,[None,784]) w=tf.Variable(tf.zeros([784,10])) b=tf.Variable(tf.zeros([10])) y=tf.nn.softmax(tf.matmul(x,w)+b) y_=tf.placeholder(tf.float32,[None,10]) cross_entropy=-tf.reduce_sum(y_*tf.log(y)) train_step=tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) sess=tf.InteractiveSession() tf.global_variables_initializer().run() for _ in range(1000): rand=np.random.randint(0,L,(100,)) batch_xs=mnist[rand] batch_ys=label[rand] sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys}) correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1)) accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) print(sess.run(accuracy,feed_dict={x:mnists.test.images,y_:mnists.test.labels})
运行结果91%左右。也算稍稍做了改变。
cnn版的还有待研究,虽然代码也很简单。先贴在这里(网上找的,兄台没记住链接不好意思)。
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data def weight_varible(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) print("Download Done!") sess = tf.InteractiveSession() # paras W_conv1 = weight_varible([5, 5, 1, 32]) b_conv1 = bias_variable([32]) # conv layer-1 x = tf.placeholder(tf.float32, [None, 784]) x_image = tf.reshape(x, [-1, 28, 28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) # conv layer-2 W_conv2 = weight_varible([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # full connection W_fc1 = weight_varible([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # dropout keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # output layer: softmax W_fc2 = weight_varible([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) y_ = tf.placeholder(tf.float32, [None, 10]) # model training cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.arg_max(y_conv, 1), tf.arg_max(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess.run(tf.initialize_all_variables()) for i in range(2000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuacy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}) print("step %d, training accuracy %g"%(i, train_accuacy)) train_step.run(feed_dict = {x: batch[0], y_: batch[1], keep_prob: 0.5}) # accuacy on test print("test accuracy %g"%(accuracy.eval(feed_dict={x: mnist.test.images[0:2000], y_: mnist.test.labels[0:2000], keep_prob: 1.0})))
版权声明:本文为原创文章,转载请注明出处和作者,不得用于商业用途,请遵守
CC BY-NC-SA 4.0协议。
赞赏一下